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Summary. The effect of inbreeding on mean and genetic 
covariance matrix for a quantitative trait in a population 
with additive and dominance effects is shown. This genet- 
ic covariance matrix is a function of five relationship 
matrices and five genetic parameters describing the pop- 
ulation. Elements of the relationship matrices are func- 
tions of Gillois' (1964) identity coefficients for the four 
genes at a locus in two individuals. The equivalence of the 
path coefficient method (Jacquard 1966) and the tabular 
method (Smith and Mfiki-Tanila 1990) to compute the 
covariance matrix of additive and dominance effects in a 
population with inbreeding is shown. The tabular meth- 
od is modified to compute relationship matrices rather 
than the covariance matrix, which is trait dependent. 
Finally, approximate and exact Best Linear Unbiased 
Predictions (BLUP) of additive and dominance effects 
are compared using simulated data with inbreeding but 
no directional selection. The trait simulated was affected 
by 64 unlinked bialMic loci with equal effect and com- 
plete dominance. Simulated average inbreeding levels 
ranged from zero in generation one to 0.35 in generation 
five. The approximate method only accounted for the 
effect of inbreeding on mean and additive genetic covari- 
ance matrix, whereas the exact accounted for all of the 
changes in mean and genetic covariance matrix due to 
inbreeding. Approximate BLUP, which is computable for 
large populations where exact BLUP is not feasible, 
yielded unbiased predictions of additive and dominance 
effects in each generation with only slightly reduced accu- 
racies relative to exact BLUP. 
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Introduction 

Genetic variation may be composed of additive and non- 
additive variance. Non-additive genetic variation includ- 
ed dominance variance, resulting from interaction be- 
tween genes at the same locus, and epistasis, resulting 
from interaction between genes at different loci. Genetic 
covariance between individuals in a random mating, non- 
inbred population for quantitative traits in a well-defined 
linear function of the genetic variance components 
(Cockerham 1954) assuming small contributions from 
many unlinked loci. 

Inbreeding may reduce the mean phenotypic value of 
a population, a phenomenon referred to as inbreeding 
depression (Falconer 1989). Inbreeding also complicates 
the genetic covariance structure of a population.. Genetic 
covariance between inbred relatives in a population with 
additive and dominance gene action but without epistasis 
can be modelled as a linear function of additive and 
dominance variance in an infinite random mating base 
population and additional genetic parameters. Extra 
parameters are: dominance variance and covariance be- 
tween additive and dominance effects in a completely 
inbred population with allelic frequencies identical to 
those in the base population (Gillois 1964; Harris 1964; 
Jacquard 1974) and, in certain settings, the sum over loci 
of squared effects of complete inbreeding depression 
(Gillois 1964; Harris 1964; Jacquard 1974; Cockerham 
and Weir 1984). Genetic covariance between inbred rela- 
tives is the sum of the genetic parameters each multiplied 
by a different coefficient of relationship. Coefficients of 
relationship are functions of probabilities that any of the 
four genes at the same or two different loci in two individ- 
uals are identical by descent. Two basic methods are used 
to compute additive relationships, a path coefficient 
method (Wright 1921) and a tabular method (Emik and 
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V ' s  g e n e s  : p a t e r n a l  g e n e  - - . -  �9 �9 -',-- m a t e r n a l  g e n e  

W ' s  g e n e s  : p a t e r n a l  g e n e  - - - -  �9 �9 ~ m a t e r n a l  g e n e  
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Fig. 1. Fiften possible identity modes between the 
paternal and the maternal gene of individual V and 
the paternal and the maternal gene of individual W 
at a particular locus. Genes identical by descent are 
connected by a line (reproduced from Jacquard 
1974, p 105) 

Terrill 1949). More generally, the genetic covariance ma- 
trix of a population with additive and dominance varia- 
tion but without epistasis can be computed from path 
coefficients (Jacquard 1966) or from a tabular method 
(Smith and M~iki-Tanila 1990). 

In this paper, genotypic variance as a special case of 
genotypic covariance in a population with additive and 
dominance gene action and inbreeding is rederived first, 
with additive and dominance effects defined in an infinite, 
random mating base population. Different settings lead 
to slightly different formulae for genotypic variance, 
which are reviewed and related. 

Subsequently, formulae for genetic covariance are 
used to model phenotypic performance of a population 
for a quantitative trait via a mixed model including effect 
of inbreed depression and a covariance matrix among 
individual additive and dominance effects. The equiva- 
lence of the path coefficient (Jacquard 1966) and tabular 
method (Smith and Mfiki-Tanila 1990) to compute the 
covariance matrix is shown and used to derive a modified 
tabular method. The latter computes relationship ma- 
trices, which must be formed only once for a given popu- 
lation. The covariance matrix among additive and domi- 
nance effects depends on the values of the genetic 
parameters, and hence would have to be recomputed for 
each trait in a given population by the method of Smith 
and M/iki-Tanila (1990). 

Finally, approximate and exact Best Linear Unbiased 
Prediction (BLUP) of additive and dominance effects are 
compared using data simulated with the individual locus 
model of De Boer and Van Arendonk (1992). Approxi- 
mate BLUP only accounts for effects of inbreeding on 
mean and additive genetic covariance, while exact BLUP 
accounts for all changes in mean and genetic covariance 

matrix with inbreeding. Approximate BLUP can be im- 
plemented for livestock populations of a moderate to 
large size, where exact BLUP is not feasible. 

Theory 

Genetic variance 

Genotypic covariances among individuals in which addi- 
tive and dominance variation and inbreeding were taken 
into account have been derived by several authors. If the 
situations considered are limited to those where a trait 
was affected by several to many loci and additive and 
dominance effects were defined in an infinite, random 
mating base population, four different settings can be 
found. The assumptions appear to be (i) many finite sub- 
populations derived in an identical fashion from an in- 
finite base population (Gillois 1964; Chevalet and Gillois 
1977); (ii) a large population derived from an infinite 
random mating base by some system of inbreeding with 
no selection, unlinked loci, and all individuals having 
identical inbreeding coefficients (Harris 1964); (iii) as set- 
ting (ii) but with variation among individuals in inbreed- 
ing coefficients (Cockerham and Weir 1984); and (iv) one 
particular finite population (Chevalet 1971). In setting (i), 
genotypic variance represents total genetic variance 
across lines (Falconer 1989; Chevalet and Gillois 1977). 
For (ii) or (iii), genotypic variance may represent total 
genetic variance among unrelated individuals with com- 
mon or average inbreeding level E 

Common to all four settings is the derivation of geno- 
typic covariance based on identity coefficients. Identity 
coefficients refer to the possible identity modes pertaining 
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to the four genes at the same locus in two individuals 
(Fig. 1) or at two different loci (Cockerham and Weir 
1984). An identity coefficient represents the probability of 
a particular identity mode. The four settings differ in the 
definition of identity coefficients and in the types of iden- 
tity modes that need to be considered. 

Following Chevalet (1971), let S~k represent an indica- 
tor variable for identity mode k (k = 1 . . . . .  15) pertaining 
to the four genes at locus I in two individuals and let 6k 
represent the probability of this identity mode. Then, 6 k 
equals the frequency of identity mode k in the limit, or 

6k= n-,| {1  [Stk(U0 + St k (u2) + . . .  + Slk(%)] } (1) 

where S~(ui) equals 1 if identity mode k is realized at 
locus I and 0 otherwise, and u i represents a pair of indi- 
viduals (covariance) or one individual (variance). In set- 
ting (i), u i is a (pair of) individual(s) in subpopulation i. In 
settings (ii) and (iii), u i may represent n independent pairs 
or n unrelated individuals in a large population. In set- 
ting (iv), 6 k is defined differently as 

5k= lim { l [ S ~ ( u ) + s 2 ( u ) + ' ' ' + s ~ ( u ) ] } ~ - ~ o  (2) 

where u represents a pair of individuals in one particular 
finite population and 6k is the limit taken over n indepen- 
dent loci. Setting (iv) requires the assumption of a large 
number of loci and a small ratio of largest to smallest 
contribution relative to number of loci (Chevalet 1971). 
The other settings are general with respect to number of 
loci and size of their contributions. 

For  genotypic variance, u represents an individual, 
and identity modes other than 1, 9 and 12 cannot be 
realized (Fig. 1). Hence, only S], S~ and S]2 are random 
variables, which are redefined as F l (u )=  Sll (u) and 1- 
F t (u) = S~ (u) + S]2 (u). If alleles at locus I in individual u 
are identical by descent (i.b.d.), FZ(u) equals 1, unless 
F l (u) is zero. 

The common starting point in all four settings is to 
define the genotypic value at locus I in an infinite, random 
mating base (b) population at the sum of breeding value 
and dominance deviation, or 

Gtb = BVB ~ + D~. (3) 

The expectation of G~ with respect to the distribution of 
alleles for a given individual u is 

Ep'Iu (G~,) = Ft(u) E~a (G~) + [1 - F t  (u)] TM ' Enotibd (GB) (4) 

where E~b a denotes the expectation conditional on the 
alleles being i.b.d, and pt is the allelic frequency at locus 
I. Knowing that in the absence of inbreeding (EnPot iba) the 
expectation of dominance effects is zero, whereas the ex- 
pectation of additive effects is zero with (E~bd) and with- 
out inbreeding P (E,otibd) (Jacquard 1966), Eq. 4, reduces, 

e.g. for a biallelic locus, to 

Ep~ In (G~) = F t (u) [p, D~t + q, D~a ] = F~(u) A ti (5) 

where DIj is the dominance deviation of genotype ij at 
locus l in the base, q z = l - p z ,  and AZi= 2plqz d I is the 
complete inbreeding depression at locus I. Variance of G~ 
with respect to the distribution of alleles for a given indi- 
vidual u is 

Var p, I- (G~) = E p' l u [(G~)E] _ [E p, I .  (G~)]2. (6) 

Using 

E p'I" [(G~) 2] = F z (u) E~g a [(G~) 21 

+ [1 l p, z 2 - -F  (u)] Enotlbd [(Gb) ] 

with, for a biallelic locus, 

E~a [(G~) 2] = Pz (BVI1 + Dr11) 2 + q, (BV~2 + D~2) 2 

and 

E,P'ot ~bd [(G~,)2] = P2 (BVIt + D~ 02 

+ 2 Pz ql (BVI z + Di  2) 2 + q2 (BV / 2 + D~ 2) 2 

in Eq. 6 yields 

VarPzlU(G~) = [ l+Ft (u) ]  Gr(o2 + [ l_F t (u ) ]  aa~(02 

+ F t(u) O'd2i (l) + 2 F t(u) Gd~ (t) (7) 

where, omitting subscript l, 

2 _ p2 BV121 + 2 p q BV22 + q2 BV22 0"ar -- 

= 2 p q [ a + d ( q - p ) ] Z = 2 p q ~  2 (8) 

O2r = p2 D2~ + 2 p q D 2 2  + q2 D~2 = (2p qd)2 (9) 

0.2i = p2 D21 _1_ q2 D22_ (pD11 + q 922)2 

= 4 p q (p3 + q3) d 2 _  (2 p q d) 2 (10) 

aadi= p BVll  D l l  + q BV22 D22 = 4 p q  ( p - q )  0r (11) 

where a = a + d ( q - p ) ,  and a and d are genotypic values 
of the favourable homozygote and the heterozygote, re- 
spectively (Falconer 1989). Variances or2 r and r~zr are addi- 
tive and dominance variances at locus I in the base, and 
o-2i and O-ad i are dominance variance and covariance be- 
tween additive and dominance effects among homo- 
zygotes or in a completely inbred population with the 
same allelic frequency as the base. Values of inbreeding 
depression, Ai, and of the (co)variances defined in Eqs. 8 -  
11 are given in Fig. 2 for varying alMic frequency. Fig- 
ure 2 shows that the relative importance of the (co)vari- 
ance components changes strongly with allelic frequency. 

In settings (i), (ii) and (iii), expectations are taken 
jointly with respect to the distribution of alMic frequen- 
cies and u, with u representing independent subpopula- 
tions or unrelated individuals. Using 

EP""( . )  = E" [Ep'Iu (.)] 
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the joint expectation of G~, for biallelic locus is 

E p~'u (G~b) = E u [F t (u)] (p~ D]~ + q~ D~2 ) = F A I (12) 

where F = 6 ~  is the inbreeding coefficient. Similarly, the 
variance of G~ is 

Var p''u (G~,) E" [F ~ (u)] p' , 2 = E i b  d [ ( G B )  ] 

+ E  u [ l - F  z(u)] P' l 2 E,o,~bd [(Gb) ] -- F 2 (dzi) 2 

Pt 1 2 = F Eib  d [(Gb) ] 

+ (1 - F) E.P'ot ~bd [(G~)2] _ F 2 (A,)2 

( I + F )  2 2 = O'ar (0 + (1 - F )  a 2, (t) + F 0"di (l) 

+ V (1 - F) (A'~) 2 + 2 F Gd~(,). (13) 

If several biallelic loci contribute to the genotypic 
value for a trait, Gb = ~ G~, is the total genotypic value 
with mean 

L 

EP" u (Gb) = F E AI = F A I  (14) 
l = 1  

where L is number of loci, and variance 

)1 Var p`'u (Gb) = E p''~ G~ -- F 2 (AI )  2 
1 

L 
= Y E p,," [(G~,) 2] 

1 = 1  

L L 

+ Z Z, E p ' ' "  (G~, Gtb') - F 2 (A,)  2 
l ~ 1 '  

L L 

( I + F )  Y 2 2 = 0"ar(l ) + (1 - F) Z O'dr (/) 
l = 1  l = l  

L 

"-~ 2 F ~~ 0"ad i (l) 
1=1  

L L 
+ 2 2 E P " U  (G~ G~') - F 2 ( A I )  2 

l ~ l "  

= (1 + F) O'ER + (1 - F) 0"D2R -]- 2 F 0"AD I "4- F 0"21 
L L 

{- FA2 - -  F 2 ( A I )  2-F Z Z E P ' ' ( G ~  G'~ ') (15) 
I:~ l '  

where 

A~=  ~2(AI) 2 and (A~)2= A 
/ = 1  I 

and 

(16) 

L L L L 
Z E EP"U (Gtb Gtb ') = E Z EU [F' (u) F t' (u)] E p' p'' (G~ G~,') 
l ~  l '  l ~  l '  

L L 

= Z Z E u I F '  (u) F" (u)] 
l ~ l '  

�9 (p, G~., + q, G~2) (Pv G]'I + qv G~'2) 
L L 

F - S Z Z  i r - = AiA  , = F  [(Ai)Z--A 21 
zr l' (17) 
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Fig. 2. Magnitude of the components of genetic variance at a 
biallelic locus with complete dominance (a = d = 1) as a function 
of allelic frequency 

with 

F -  = E ~ [F g (u) F~' (u)]. (18) 

Hence, using Eq. 17 in Eq. 15 

Var p''u (G 0 = (1 + F) 0"2R "4- (1 - F) 0-2DR + F a 2, + 2 F (TAD I 

+ F(1 - F ) A 2 +  (F-  - V  2) [(AI)Z-A2]. (19) 

From Eq. 18, F - - F  2 is the covariance among F~(u) 
and F v (u). Let F ~ (u) be composed of its expected value 
and a residual or FZ(u)= F+Rl(u) .  Hence, F - - F 2 =  
Cov (F l (u), F v (u)) may be partitioned as 0 -2 + Cov (W (u), 
R v (u)). For  unlinked loci the last term is equal to zero, 
and F -  - F 2 - -  o -2 , with a 2 representing variation among 
individuals in inbreeding coefficient. If av z is zero and loci 
are unlinked, F -  = F 2 ;  hence the last term in the right- 
hand side of Eq. 19 is zero. 

Equation 19 is general and holds for any number of 
alleles per locus (Cockerham and Weir 1984). E q u a -  
tion 19 is obtained in setting (iii), while for settings (i) and 
(ii) tr 2 = 0, and hence genotypic variance equals Eq. 19 
but without its last term. For  setting (iv), the genotypic 
mean is 

L 

E (Gb) = Y E p' l u [V z (u)] EP~d ( a t )  ~- F A I 
l = l  



Table 1. Equivalence between the parameterizations of genetic covariance used in this paper and those in 
Jacquard (1974, p 135) and Cockerham and Weir (1984, p 160) 
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Harris (1964, p 1329), 

Present Harris (1964) a Jacquard (1974) Cockerham and 
paper Weir (1984) 

Covariances a l ,  or2, V A ~rl 
O'2R O'2R V D 0 -2 
cg~ CrD2 , V u -  D~I D* 
O'AD I O'AD 1 2 Coy n (A, D) 2 D 1 
A 2 D~ D~ H* 
(AI)2--A 2 - _ H 2 _ H  * 

Relationship a,w 2 Gw 2 Cbvw 2 0vw 
coefficients drvw u w A l 2 (A ~ + w - 6~..) 

divw Lw ~4 6~. 
c~w + c~  S~w + Sw~ ~3 + ~4 2 (7~w + 7vr 
Uvw tvw + %w-- F~ Fw A2-FvFw+~,  Av+w-FvFw 
tvw - - A~w-FvF w 

a Formula (26) on page 1329 from Harris (1964) is based on a one-locus model 

with a proof  of this approximat ion given by Chevalet 
(1971). Similarly, genotypic variance is approximated  as 

L 
Vat (Gb) = 52 Var p' l u (G~) 

l = i  

"~ (i  -I- F)  0"2 R ~- (1 --  F)  O2R n t- F 02i-~- 2 F 0.ADD 

which is Eq. 19 with the last two terms omitted. 

Genetic covariance between relatives 

Equation 19 represents the special case of the genetic 
covariance of an individual with itself. A general formula 
for the genetic covariance between individuals V and W 
with arbi trary inbreeding coefficients is (Cockerham and 
Weir 1984) 

%v Gw = avw O-~R + dGw agR + divw 0"2I 

+Cwv0"Ao~+u.wA2i + tvw[(Ai)2-A 21 
where 

avw 

dGw 

di~w 

(20) 

is the additive genetic relationship between individ- 
uals V and W; 
is the relationship between individuals V and W due 
to dominance variance in the base populat ion;  
is the relationship between individuals V and W due 
to dominance variance in the completely inbred 
populat ion;  

Cvw is the relationship between the additive effect of 
individual V and the dominance effect of individual 
W; 

Cwv is the relationship between the additive effect of 
individual W and the dominance effect of individual 
V; 

Uvw is the relationship between individuals V and W due 
to the sum of squared inbreeding depressions; and 

tvw is the relationship between individual V and W due 
to component  (AI)2--A 2. 

Genotypic  covariance derived in settings (i) and (ii) 
(Gillois 1964; Harris  1964; Jacquard 1974) does not in- 
clude the last term of Eq. 20. Table 1 shows the equiva- 
lence of Eq. 20 and the equations given by Harris  (1964, 
p 1329), Jacquard (1974, p 135) and Cockerham and Weir 
(1984, p 160). Genotypic  covariance in setting (iv) is equal 
to Eq. 20 with the last two terms omitted (Chevalet 1971; 
Chevalet and Gillois 1977). 

The additive genetic relationships between :individu- 
als V and W, avw, equals twice the probabil i ty that  a gene 
taken at random from V is i.b.d, to a gene taken at 
random from W. This occurs one-quarter  of the time for 
identity modes 10, 11, 13 and 14 in Fig. 1, one-half of the 
time for identity modes 2, 3, 4, 5, 9 and 12, and always for 
identity mode 1, or 

+ �88 + 611 + 613 + 61,)]. (21) 

Dominance relationship drvw equals the probabil i ty that 
each gene in V is i.b.d, to a different gene in W and genes 
in the same individual are not i.b.d., an event represented 
by identity modes 9 and 12, or 

drvw = 69 -~ 612. (22) 

Dominance relationship divw is the probabil i ty that all 
four genes in V and W are i.b.d., or 

divw = 61- (23) 

Relationship Cvw equals the probabil i ty that  a gene taken 
at r andom from V is i.b.d, to both genes in W, involving 
identity modes 1, 4 and 5, or 

1 (64 + 6s). (24) Cvw=61+ 2 

Similarly, 

Cwv = ~1 -}- 1 052 _it_ 63). (25) 
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From results in Jacquard (1974, p 135) and Table 1, 

Uvw = (61 + 6 6 -  F~ Fw) (26) 

where Fv and Fw are the inbreeding coefficients of individ- 
uals V and W, respectively, which can also be expressed 
in terms of the identity coefficients (Jacquard 1974, p 109) 
or 

Fv = 61 -+- 02 + 63 -f- 66 q- 07 and 

Fw = 61-4- 64 -t- 65 + 66 -f- 6 s . 

Relationship coefficient tvw was defined by Cockerham 
and Weir (1984) (see Table 1) and depends on identity 
coefficients involving genes at two different loci. 

Equation 20 reduces to Eq. 19 when considering co- 
variance of an individual with itself. In this case the only 
non-zero identity coefficients are 61 = F~ and (69 +612 ) 
= I - F v .  

Genetic covariance matrix for a quantitative trait 

A linear model for phenotypic measurements of individu- 
als for a quantitative trait with additive and dominance 
variance includes additive and dominance genetic values, 
with dominance values partitioned into the effect of in- 
breeding depression plus dominance effects, and system- 
atic environmental effects, or 

y=Xf l  + Z a  + Z (fAi+ d) + e (27) 

where/~ is a vector of fixed environmental effects, a is a 
vector of random additive effects, d is a vector of random 
dominance effects, X and Z are known incidence ma- 
trices, f is a known vector of inbreeding coefficients E A~ 
is the fixed effect of the complete inbreeding depression 
and e is a vector of random residuals. 

Mean and covariance matrix of y are E ( y ) = X ~  
+ Z fAi and Var (y) = [Z, Z] G [Z, Z]' + I a 2 with error 
variance o -2, respectively, and G is the covariance matrix 
of [a', d']', or 

(28) 

Var = G = LC, aAD I (DR CrgR+ DI a•,+ UA2) 

where A is a matrix of additive genetic relationships (avw), 
C is a matrix of relationships between additive and dom- 
inance effects (Cvw and Cwv), DR is a matrix of relationship 
due to the dominance variance in the base population 
(drvw), D~ is a matrix of relationships due to dominance 
variance in the completely inbred population (di~w), and 
U is a matrix of relationships due to the sum of squared 
inbreeding depressions (Uvw). 

Covariance matrix (28) does not include the last term 
in the right-hand side of Eqs. 19 or 20 because variance 
among individuals in their inbreeding coefficients, and 
hence in inbreeding depression, is eliminated by parti- 
tioning dominance effects into fAi and d in Eq. 27. Treat- 
ing f as a random variable rather than a known constant, 

Var (fAx)= a 2 (AI) 2. If number of loci, L, tends to infinity 
and A i is constant across loci, (A~)2=LZA~ and 
(A~) z - A 2 = L ( L -  1) Ai z -~ L e A~ z. Hence, (A~) 2 -~ (A,) 2 - A~. 
The term UA~ should be dropped ifEq. 28 represents the 
covariance matrix of genetic effects of individuals in a 
finite population. 

Matrix G can be computed with a path coefficient 
method (Jacquard 1966) and a tabular method (Smith 
and Maki-Tanila 1990). Both methods will be described 
briefly and their equivalence will be shown. 

Path coefficient method 

The path coefficient method of Jacquard (1966) deter- 
mines the genetic covariance between two individuals V 
and W computing probabilities of all of the identity mod- 
es in Fig. 1. The following steps are required: (1) find all 
common ancestors of V and W; (2) determine all possible 
paths of origin of their four genes at a locus; (3) determine 
the probability of each path; (4) for each path, determine 
the various identity modes and their probabilities; (5) 
sum the probabilities by identity mode across paths. 

The path coefficient method is useful for single and 
simple pedigrees, but is not suitable for computing the 
genetic covariance matrix of a large population. 

Tabular method 

The tabular method of Smith (1984) and Smith and 
M/iki-Tanila (1990) determines the exact genetic covari- 
ance structure in a population using an extended genom- 
ic table following Harris (1964) and Gillois (1964), or for 
settings (i) and (ii). The extended genomic table, denoted 
by E, contains the first moments or expected values of 
additive effects of gametes and dominance effects of 
gamete pairs in its first row and column, except for the 
first element equal to one, and second moments of all 
effects in its remaining rows and columns. Elements of E 
are computed using recursive rules of Smith and M~iki- 
Tanila (1990, pp 21-72). An initial list of gametes and 
gamete pairs includes all gametes and gamete pairs repre- 
sented in individuals of a population. Smith and M~iki- 
Tanila (1990) give an algorithm to form the list of gametes 
and gamete pairs, which adds ancestral gamete pairs and 
produces an ordering required to compute E recursively. 

After absorption of the first row and column, E repre- 
sents a matrix of covariances, which may be partitioned 
into a submatrix of covariances among additive effects of 
gametes, a submatrix of covariances among additive ef- 
fects of gametes and dominance effects of gamete pairs, its 
transpose, and a submatrix of covariances among domi- 
nance effects of gamete pairs. 

Equivalence between path coefficient and tabular methods 

Equivalence between the path coefficient (Jacquard 1966) 
and tabular method (Smith 1984; Smith and M/iki- 
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Tanila 1990) will be shown for each submatrix of E sepa- 
rately�9 

Covariance between additive effects 

The additive genetic relationship between individual V 
with paternal and maternal gametes i and j and individu- 
al W with paternal and maternal gametes k and m is 
computed from E as (Smith 1984): (29) 

a~w= [E (ai, ak) + E(ai, am) + E(aj, ak) + E(a~, am)]/a2R 

where E (a i, ak) is the element in E corresponding to row 
a~ and column ak, which is the second moment or covari- 
ance between additive effects of gamete i(ai) and k(ak). 
Second moments equal covariances because the expected 
value of a gamete's additive effect is zero. The additive 
genetic covariance between gametes i and k is equal to 
the probability that a gene in gamete i is i.b.d, to another 
gene at the same locus in gamete k, denoted by P (i-= k), 

I 0.2R times the additive variance among gametes or 
(Smith and Allaire 1985), Hence, 

1 [P(i =_ k) + P (i - m) + P (j = k) + P (j -= m)]. (3O) avw- 

Each probability in Eq. 30 may be computed by adding 
all of the probabilities of identity modes (Fig. 1) contain- 
ing the particular identity, e.g. for i = k 

P (i = k) = P ( i - j  - - k - m )  + P ( i - j  - k ~ m )  

+ P ( i - k = m 6 J )  + P ( i = k # j - = m )  (31) 

+ P(i - - k ~ j  6m)  = 61 -}- 32-[- 34-}- b9 ~- (~10. 

The use of Eq. 31 and similar identities in Eq. 30 yields 
the additive relationships in terms of identity coefficients 
given in Eq. 21. 

Furthermore, the probabilities of gene identities in 
Eq. 30 can be computed recursively using the following 
rules. Let i_> k, if i is a descendant of k. Base gametes do 
not have any known parental gametes. If i and k are base 
gametes, 

P ( i - k ) = l  i f i=k ,  else P ( i - k ) = 0 .  (32) 

If i is not a base gamete, and x and y are the parental 
gametes of i, then for i # k 

P ( i -  k) = P ( x - k )  - P (i=x) + P ( y - k )  - P( i=y)  

_ 1 [p  (x - k) + P ( y -  k)] (33) 

where, e.g. P (i = x) is the probability that gene in gamete 
i is a copy of gene at the same locus in parental gamete 
x. For i=k,  

1 [p (x - x) + P (y -- y)] = 1. (34) P ( i - k )  = P (i_=i) = 

Equations 32-34 are analogous to recurrencies for co- 
variances or second moments among additive effects of 
gametes presented by Smith and M/iki-Tanila (1990, 
p 71). 

Covariance between additive and dominance effects 

The relationships coefficient between the additive effect of 
individual V with gametes i and j, and the dominance 
effect of individual W with gametes k and m, Cvw , is 
computed from E as: 

Cvw = [E (ai, dkm ) + E (aj, dkm)]/O'Ao I (35) 

where E(ai, dkm ) is the second moment of covariance 
between the additive effect of gamete i (a~) and the domi- 
nance effect of gamete pair km (dkm). Similar to the co- 
variance among additive effects of gametes, Cov (a~, dkm ) 
equals the probability that a gene at a particular locus in 
gamete i is i.b.d, to both genes at the same locus in gamete 
pair k m, denoted by P (i -~ k --- m), times �89 aAD I. Then, the 
relationship coefficient between the additive effect of indi- 
vidual V and the dominance effect of individual W can be 
written as: 

1 [P ( i - k - m ) +  P(j - k  =m)]. (36) Cvw = 

Both probabilities in Eq. 36 can be written in terms of 
identity coefficients (Fig. 1), e.g. 

P(i =k-=m) = P ( i= j  - k = m )  

+ P ( i = k - m ~ j )  =51 +64 (37) 

yielding the additive-dominance relationship coefficient 
in Eq. 24. 

The probabilities of gene identities in Eq. 36 can again 
be computed recursively. Let i_>k>m. If i is a base 
gamete, implying that k and m are also base gametes, 
then 

P ( i = k - m ) = l  i f i = k = m ,  e l s e P ( i = k - m ) = 0 .  (38) 

If i has known parental gametes x and y, then for i ~ k # m 

P(i-= k-= m) = P(x--k=-m) �9 P( i=x)  + P(y=-k=~m) 

i [P(x =k-=m) + P ( y - : k - m ]  �9 P ( i = y ) =  

and for i=  k, (39) 

1 [p (x -= m) + P (y - m)]. (40) P(i-= k - m )  = P ( i - m )  = 

Recurrence (39) was given in Harris (1964, p 1322), and 
recurrencies (38-40) are given by Smith and M~iki-Tanila 
(1990, p 71) for second moments rather than identity 
probabilities�9 

Covariance between dominance effects 

The covariance between dominance effects of individuals 
V(dij ) and W(dkm ) is the element of E pertaining to 
gamete pairs ij and km, which is by definition 

L 
Coy (dij , dkm ) ~ E [E (dlj d / m ) -  E (dlj) E (d/m)] (41) 

/=1 

where dlj is the dominance effect of gamete pair ij at locus 
l with d~j =27 d~j, L is number of loci, E(dlj ) is the first 
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moment or expected value of dZij, and E (dlj dim ) is the 
second moment among the dominance effects of gamete 
pairs ij and k m at locus l. 

The first moment of dlj is equal to the probability that 
the genes in gamete par ij at locus 1 are i.b.d, times the 
inbreeding depression at locus I, or E (d l j) = P (i - j )  A I. 
Then the part of Eq. 41 pertaining to first moments be- 
comes 

L L 
Z E (d~ij) E (d~m) = P(i==-j) P ( k - m )  52 (AI) 2 

I =1 1 = 1  

= P (i ~j) P (k = m) A 2 . (42) 

Probabilities in Eq. 42 can be obtained from identity co- 
efficients, e.g. 

P ( i - j )  = P ( i - j  = k - m )  + P ( i - j  =-k~m) 

+ P ( i - j - m  ~k) + P(i=-j ~ k - m )  (43) 

+ P ( i - ~ j ~ k ~ m ) = 6 1 + 6 2 + 3 3  +56 + 6 7 = F  v. 

Similarly, P ( k -  m) = Fw; hence Eq. 42 can be rewritten 
a s  

L 
2 E (dlj) E (d~m) = FvF, v A2" (44) 

Each second moment in Eq. 41 is a weighted sum of the 
dominance variance in the noninbred base population, 
the dominance variance in the completely inbred popula- 
tion and the sum of squared inbreeding depressions, or 

E(dlj d lm)=[P(i  - = k ~ j = m ) + P ( i - m ~ j - k ) ]  2 O-dr (1) 

+ P ( i - j  - k - m) {~2im + (A zi)2 } 

+ P ( i = j ~ k = m ) ( A l )  2 (45) 

where adr(02, adi(02 + (AZi) z, and (AI) 2 are second moments 
conditional on the four identity cases above. Second mo- 
ments for all other identity cases (Fig. 1) are zero due to 
relationships (Harris 1964) 

p id i j=  k P j d u = 0  
i = 1  j = l  

where s is the number of alleles per locus. Summation 
over loci yields 

L 
52 t l E (d u dkm) = [P (i - k ~ j  = m) + P (i - m ~j  - k)] O-2R 

1 = 1  
+ P (i -=j - k --- m) 621 (46) 

+ [p ( i - j  - k - m )  + p( i - j  ~ k -  m)] A?. 

Expressing the probabilities in Eq. 46 as identity coeffi- 
cients (Fig. 1) and combining Eq. 46 with Eq, 44 in Eq. 41 
yields 

Coy (dij, dkm ) (47) 

= ( 6 9 - [ - 6 1 2  ) O'2DR'-[- ~51 t72i+ (~51 + 66-- Fv Fw) A 2 

with coefficients equal to those in Eqs. 22, 23 and 26. 

The probabilities in Eq. 46 were referred to as "four- 
way coefficients" and "two-pair coefficients de parent6" 
by Harris (1964), and recursive rules for their computa- 
tion were given. 

In conclusion, extracting elements from E to compute 
additive, additive-dominance, and dominance relation- 
ship coefficients is equivalent to computing these rela- 
tionships from identity coefficients evaluated with the 
path coefficient method as defined in Eqs. 21-26. Recur- 
sive computation of E, however, requires use of the genet- 
ic parameters O-AZR, a2R, 0"2~, O-AD ~ and A~ z. This approach 
becomes inefficient if the same population is analysed for 
several traits with different genetic parameters values, or 
when parameter values are unknown and, if possible, 
estimated iteratively. Hence, a modified tabular method 
will be presented next. 

Modified tabular method 

Relationship coefficients can be computed from probabil- 
ities of gene identities by descent as shown in Eqs. 30, 36, 
42, and 46. Hence, instead of computing a matrix with 
first and second moments (E), matrices with the required 
types of probabilities of gene identities may be computed 
recursively. A tabular method then consists of two main 
steps: 
1) Form matrices including the following probabilities 

from a list of gametes and gamete pairs, respectively. 
Let ij and k m represent gamete combinations of two 
individuals. 

M l = { P ( i - k ) } ;  M z = { P ( i - k = m ) } ;  

M 3 = { P ( i - -k ~ j  - m )  + P ( i - m  ~j  -k)};  

M 4 = {P (i =j  - k = m)} and 

M s =  { P ( i = j = k = m ) +  P ( i = j ~ k = m )  

- P ( i - j )  P (k =- m)}. 

2) Compute relationship matrices in Eq. 28. Matrix A 
may be obtained from M 1 but is computed more 
efficiently using the well-known tabular method de- 
scribed by Henderson (1976), C is obtained from M 2 
using Eq. 36, D R = M  3, DI= M4, and U = M  5. 

Step (1) consists of the following sub-steps: 
1.1) Form ordered lists of gametes and gamete pairs, 

respectively. The list of gametes includes paternal 
and maternal gametes of all individuals. The list of 
gamete pairs includes those in all individuals, and 
ancestor pairs are added with the algorithm of Smith 
and M/iki-Tanila (1990, p 70). 

1.2) Form M 1 for all gametes i and k using Eqs. 32-34, 
or form A directly. 

1.3) Form M 2 for all gametes i and gamete pairs km. 
Identify rows of M z by the ordered list of gametes 
and write the parental gametes on the left of each 
gamete. Identify the columns of Me by the ordered 
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1.4) To 

list of gamete pairs, and write the parental  gamete 
pairs above each pair. Parental  gamete pairs of 
gamete pair k m  are x m  and ym,  i fk_>m and x and 
y are parental  gametes of k. Then, fill the matrix by 
proceeding from left to right within the row and 
from top to bot tom within the column using the 
following rules. 
a) If i > k, and 

- i  is a base gamete, use Eq. 38 
- i  is not a base gamete, and 
- i ~ k and k r m, use Eq. 39. 
- i = k and k r m, use Eq. 40. 
- i = k = m ,  M2(i, km)  = 1. 

b) If i < k, and 
- k  is a base gamete, M2 (i, km)  -- 0. 
- k  is not a base gamete, and 
- k  Cm,  M z (i, km)  = �89 [M 2 (i, xm) + M 2 (i, ym)]. 
- k = m ,  M2(i. km)  = �89 [M2 (i, xx) + M2(i, YY)I. 

form M 3, M 4, and M5 identify rows and columns 
by the ordered list of gamete pairs. For  gamete pairs 
ij and k m, let i >_>_j and k_> m. Comput ing only the 
lower half of the matrix implies that  i > k .  Then 
M3(i j, km)  may  be computed with the following 
rules. 
a) If i is a base gamete, M3 (i j, k m) = 1 if i = k, j = m, 

i Cj and k Cm,  and zero elsewhere. 
b) I f i  is not a base gamete: 

- i C j, and 
- i C k ,  M3 (ij, km)  

_ 1 [ g 3  (xj, k m )  + M 3 (yj, km)]  
- i = k ,  M3(i j, km)  

- a [M3 (xj, x m ) +  M 3 (yj, ym)]  - 2  
- i =j ,  and 
- i C k ,  M 3 (ij, km)  

_ 1 [M3 (xx, k m )  + M3 (YY, kin)] 
- i = k ,  M3 (ij, kin) 

[M3 (xx, xx) + M 3 (yy, yy)]. = g  

1.5) To form M4, apply the rules in (1.4), except replace 
a) with: if i is a base gamete, M4(ij, k m ) = l  if 
i = j  = k = m, and zero elsewhere. 

1.6) To form M s , include one extra row and column 
containing P (i--j) for any gamete pair ij. The re- 
maining rows and columns contain P (i - j  -= k - m) 
+ P ( i - j  ~k--=m). 
a) Start with the first column, using recurrences 

(32 34). 
b) Compute  remaining rows and columns of the 

lower triangular matrix with rules in (1.4), except 
replace a) with: if i is a base gamete, M 5 (ij, km)  
= 1 if ( i - j )  and (k = m), and zero elsewhere. 

c) Adjust each element in all rows and columns 
except the first by Ms(i j ,  k m ) =  M s ( i j , km)  
- M s ( 1 ,  km)  Ms(i j ,  1 ). Delete first row and 
column. 

A 

J@ @ 

Fig. 3. Parent-offspring mating with animals represented by 
blocks and letters, parental gametes as left- and maternal gametes 
as right-numbered circles within blocks 

Table 2. Probabilities of identity modes (IM) pertaining to the 
four genes of individuals B and C in Fig. 3 computed with the 
path coefficient method of Jacquard (1966) 

Path Prob- Origin genes Origin genes IM b Prob- 
ability B C ability 
path IM 

4 3 5 6 

1 a 1/2 A B A A 

1 3 1 1 4 1/4 
1 3 2 1 13 1/4 
2 3 1 2 13 1/4 
2 3 2 2 4 1/4 

2 a 1/2 A B A B 

1 3 1 3 9 1/4 
1 3 2 3 11 1/4 
2 3 1 3 11 1/4 
2 3 2 3 9 1/4 

a Origins of genes (4, 3, 5, 6) are A, B, A, A for path 1 and A, B, 
A, B for path 2, respectively 
b Number of identity mode as presented in Fig. 1 

Results 

Numerical example for computation of covariance matrix 

A parent-offspring mating, depicted in Fig. 3 with indi- 
viduals identified by letters A, B and C, will be used to 
illustrate pa th  coefficient and tabular  methods for com- 
puting genetic covariance among individuals. 

Path coefficient method 

Comput ing the genetic covariance between individuals B 
and C requires evaluation of all 15 identity coefficients 
pertaining to the four genes in B and C at any locus. The 
four genes are defined as the paternal (4) and maternal  (3) 
gene in B and the paternal  (5) and maternal  (6) gone in C. 
Identity coefficients are computed  in five steps as follows. 
(1) The only common  ancestor of B and C is A. (2) Genes 
1, 2, and 3 in Fig. 3 are base genes. There are two paths 
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of origin of the four genes of interest (4, 3, 5, 6). In both 
paths, gene 3 is a base gene, and genes 4 and 5 derive from 
the base genes in A. The paths differ in the origin of gene 
6 in C. In the first path,  gene 6 is inherited from individual 
A through individual B, implying that  4 and 6 are copies 
of the same ancestral gene in A. In the second path, gene 
6 is a copy of gene 3 in B. (3) The probabil i ty of each path  
of origin is V2. (4) The four genes of interest (4, 3, 5, 6) can 
be copies of the base genes 1, 2, and 3 in different ways, 
e.g. (4 = 1, 3 = 3, 5 = 1, 6 = 1). All possibilities are listed in 
Table 2 by path of origin. The case (4 = 1, 3 = 3, 5 = 1, 6 = 1) 
has probabil i ty P (4 = 1) x P (3 = 3) x P (5 = 1) x P (6 = 1 I 
4 = 1) = 1/2 x 1 x Y2 x 1 = 1/4, and is represented by identi- 
ty mode 4 of Fig. 2 (first line for path  1 in Table 2). Iden- 
tity modes and their probabilities for all other cases are 
given in Table 2. (5) Multiplication of probabil i ty of path  
and probabil i ty of identity mode and summing by identi- 
ty mode in Table 2 yields the only nonzero identity coef- 
ficients 6 4 = ( � 8 9  V4)-[-(1//2 X 1//4)= V4, 6 9 :  1//4, 6 1 1 :  1//4, 

and 613 = 1/4. 
F rom the coefficients of identity, relationship coeffi- 

cients are computed via Eqs. 21-26,  or anc=  �90 drBc 
= 1/4, diBc = 0, %c = %, CcB= 0, and UBc = 0. Consequent-  
ly the genetic covariance between individuals B and C is: 

3 2 1 2 1 (48) 0"GB Gc = g 0-AR "~- g 0"DR ~- g 0"ADI" 

Table 3. Matrix M, = {P ( i -  k)} in the modified tabular method 
for the list of gametes from the pedigree in Fig. 3. For gametes 
identifying rows, paternal and maternal gametes are given on the 
left 

1 
2 
3 

1 2 4 
t 2 5 
4 3 6 

1 2 3 4 5 6 

I 
0 1 
o o I 
1/2 1/2 0 1 
1/2 t/2 0 V2 
1/4 1/4 2/2 2/2 1/4 

Tabular method 

To compute the genetic covariance matrix between indi- 
viduals B and C from pedigree in Fig. 3 with the modified 
tabular method,  lists of gametes and gamete pairs, respec- 
tively, must  be created first. The list of gametes included 
the gametes indexed 1, 2, 3, 4, 5 and 6. The list of gamete 
pairs initially contains the pairs existing in individuals A, 
B and C, or 21, 43, 65. Subsequently, starting with the 
gamete pair of the youngest individual, 65, ancestral 
gamete pairs are added into the list: 54 and 53 for 65, 42 
and 41 for 54, 32 and 31 for 53, 22 and 21 for 42, and 11 
for 41, yielding the ordered list 11, 21, 22, 31, 32, 41, 42, 
43, 53, 54, 65. 

Matrices M , ,  M2, M 3, M 4 and M s were computed 
from the two lists and rules (1.1)-(1.6) stated earlier, and 
are given in Tables 3 -7 .  

The additive genetic relationship between individuals 
B (43) and individual C (65) is computed from M 1 in 
Table 3 as: 

aac = '/2 [M 1 (3, 5) + M 1 (3, 6) + M i (4, 5) + M 1 (4, 6)] = 3/4. 

The relationship coefficient between the additive ef- 
fect of B and the dominance effect of C is computed from 
M 2 in Table 4 as: 

CcB= V2 [Me (3,65) + M2 (4,65)] =*/8. 

The relationship between the dominance effect of B and 
the additive effect of C is computed from M 2 in Table 4 
as:  

CBC = V2 [M 2 (43, 5) + M z (43, 6)] = 0. 

The relationship between the dominance effects of 
individuals B and C due to agg is element (43, 65) in M 3 
of Table 5, hence drBc = 1/4. The relationships due to azi 
and due to A~ are the corresponding elements in M4 of 
Table 6 and Ms of Table 7, respectively, hence diBc = UBC 
=0.  The total genetic covariance between B and C is 
therefore that  given in Eq. 48. The matrix of genetic co- 
variances between additive and dominance effects of all 
individuals in Fig. 3 is given in Table 8. 

Table 4. MatrixMz= {P( i~k~m)}in  the modified tabular methodforthelist ofgametes and gamete pairs ffomthe pedigreein Fig. 3. 
Parental gametes or gamete pairs are given on the lefffor gametes and on the top for gamete pairs, respectively 

11 21 21 22 31 32 31 32 41 42 53 54 

11 21 22 31 32 41 42 43 53 54 65 

1 
2 
3 

1 2 4 
1 2 5 
4 3 6 

i 0 0 0 0 i/2 0 0 0 i/+ i/8 
0 0 I 0 " 0 0 1/2 0 0 I/4 I/8 
0 0 0 0 0 0 0 0 0 0 0 
1/2 0 1/2 0 0 1/2 1/2 0 0 1/2 1/4 
1/2 0 1/2 0 0 1/4 1/4 0 0 1/2 1/4 
1/4 0 1/4 0 0 1/4 1/4 ,,0 0 1/4 1/4 
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Table 5. Matrix M 3 = {P ( i -  k Cj = m) + P (i = m Cj - k)} in the modified tabular method for the list of gamete pairs from the pedigree 
in Fig. 3. For gamete pairs identifying rows, parental gamete pairs are given on the left 

11 21 
21 22 
31 32 
31 32 
41 42 
53 54 

11 
21 
22 
31 
32 
41 
42 
43 
53 
54 
65 

11 21 22 31 32 41 42 43 53 54 65 

0 
0 1 
0 0 0 
0 0 0 1 
0 0 0 0 
0 1/2 0 0 
o 1/2 o o 
o o o 1/2 
o o o 1/2 
0 1/2 0 0 
0 1/4 0 1/4 

t 
0 1/2 
o o t/2 
1/2 0 0 t 
1/2 0 0 1/2 
0 1/4 1/4 0 
3/4 1/8 1/8 1/4 

t 
0 1/2 
1/2 1/4 3/4 

Table 6. Matrix M 4 =  {P(i-=j_=k-m)} in the modified tabular method for the list of gamete pairs from the pedigree in Fig. 3. For 
gamete pairs identifying rows, parental gamete pairs are given on the left 

11 21 22 31 32 41 42 43 53 54 65 

11 21 
21 22 
31 32 
31 32 
41 42 
53 54 

11 
21 
22 
31 
32 
41 
42 
43 
53 
54 
65 

t 
0 0 
0 0 t 
0 0 0 0 
0 0 0 0 
I/2 0 0 0 
0 0 1/2 0 
0 0 0 0 
0 0 0 0 
1/4 0 1/4 0 
1/8 o 1/8 o 

0 
o 1~ 
o o t ~  
0 0 0 
0 0 0 
o t ~  1~ 
0 1/8 1/8 

0 
0 0 
0 0 1/2 
0 0 1/4 1/4 

Table 7. Matrix M 5 = {P ( i - j  = k -- m) + P (i---j r k -= m) - P (i ~-j) P (k - m)} in the modified tabular method for the list of gamete pairs 
from the pedigree in Fig. 3. For gamete pairs identifying rows, parental gamete pairs are given on the left 

11 21 22 31 32 41 42 43 53 54 ,55 

11 21 
21 22 
31 32 
31 32 
41 42 
53 54 

11 
21 
22 
31 
32 
41 
42 
43 
53 
54 
65 

0 
0 0 
0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 
o 1/4 
0 - 1/4 1/4 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 
0 0 
o o 1/4 
o o 1/8 3/16 

Prediction of additive and dominance effects 
from simulated data 

D a t a  were s imula ted  with  an indiv idual  locus m o d e l  de- 

scribed by De  Boer  and  Van A r e n d o n k  (1992). The  s imu- 

la ted trai t  was affected by 64 unl inked  biallelic loci  wi th  

comple te  d o m i n a n c e  (a = d = 1) and  no epistasis, and was 

measured  on  bo th  males  and females. A n o r m a l y  distr ib-  

u ted  env i ronmen ta l  dev ia t ion  was added  to each geno-  

typic value  based on a b road-sense  her i tabi l i ty  (H 2) of 0.2 

or  0.5 in the base generat ion.  Each  s imula ted  p o p u l a t i o n  

inc luded  five generat ions.  The  init ial  genera t ion  con-  
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tained 20 males and 20 females whose genes were ran- 
domly chosen according to Hardy-Weinberg proportions 
and gametic phase equilibrium. Frequency of the favour- 
able allele in the base generation was 0.2, 0.5 or 0.8 at all 
loci. In each generation, 5 randomly chosen males and all 
20 females were mated, with each mating producing 
1 male and 1 female offspring. Each of the 5 males was 
mated to its full sib and 3 related females, with the result 
that inbreeding levels increased from 0 to 0.35 in genera- 
tion five. For  each combination of heritability and allelic 
frequency, the simulated population was replicated 1000 
times. In each replicate, average predicted minus simulat- 
ed additive and dominance effects and correlation be- 
tween predicted and simulated effects were computed 
within generation and averaged across replicates. 

Data  from all five generations were used to predict 
additive and dominance effects with exact and approxi- 
mate BLUP. Mixed model equations (MME) for exact 
B L U P  were based on model (27) with X/~ replaced by 1 #, 
where # was the mean in the base generation, and with 
genetic covariance matrix in (28). Approximate M M E  
were also based on model (27), but the genetic covariance 

Table 8. Genetic covariance matrix between additive (a) and 
dominance (d) effects of individuals A, B and C in Fig. 3 

a A aB ac dA dB dc 

aA 
aB 
a C 
da 
dB 
dc 

aA2, 1/2 aA2R 3/4 G~R 0 0 1/8 tAD I 
a]R 3/402R 0 0 1/8 tAD 1 

5/4 ~2 R 0 0 1/4 tAD ~ 
if2 R 0 1/4agR 

a21~ 1/4 a2R 
3/4 ~g. + 1/4.g, 

+3/16A12 

matrix was approximated by 

0 

where D is a dominance relationship matrix computed by 
ignoring inbreeding. For  both approximate and exact 
MME,  the total dominance effect of an individual V was 
predicted as a v + 31 F v. 

Average predictions of additive and dominance effects 
in each population and generation from both approxi- 
mate and exact B L U P  were empirically unbiased, which 
is expected and consistent with results from De Boer and 
Van Arendonk (1992). Mean predicted minus simulated 
additive effects in each generation ranged from - 0 . 0 4  to 
0.09, with corresponding standard errors of 0.06 and 0.12. 
Mean predicted minus simulated dominance effects in 
each generation ranged from - 0 . 1 2  to 0.05, with corre- 
sponding standard errors of 0.12 and 0.04. Mean empiri- 
cal accuracies of predicted additive and dominance effects 
in generations 1, 3 and 5 are given in Table 9 for varying 
H 2 and initial alMic frequency. The level of H 2 did not 
clearly affect differences in the accuracy of predicted addi- 
tive effects between both methods. For  initial allelic fre- 
quencies of 0.2 and 0.5, empirical accuracies of predicted 
additive effects were almost identical. For  p = 0.8, howev- 
er, additive effects were predicted with a slightly higher 
accuracy with the exact than with the approximate meth- 
od in generations with inbreeding. By comparison with 
Fig. 2, it appears that there is a noticeable difference in 
accuracy of predicted additive effects between the exact 
and the approximate method only if dominance variance 
is large relative to additive variance (p = 0.8), whereas a 
large covariance between additive and dominance effects 
(p = 0.2) has little impact. Differences in accuracy of pre- 
dicted dominance effects were larger than for additive 

Table 9. Mean empirical accuracies of predicted additive and dominance effects in generations 1, 3 and 5, averaged over 1000 replicates, 
for approximate and exact BLUP, for a broad-sense hefitability of 0.20 and 0.50 and for varying initial allelic frequency p~ 

Pi Generation Broad heritability of 0.20 Broad heritability of 0.50 

Approximate Exact Approximate Exact 

Additive Dominance Additive Dominance Additive Dominance Additive Dominance 

0.2 1 0.482 0.144 0.482 0.145 0.704 0.238 0.705 0.240 
3 0.528 0.450 0.529 0.463 0.704 0.494 0.705 0.509 
5 0.4/3 0.366 0.414 0.387 0.592 0.393 0.595 0.427 

0.5 1 0.427 0.257 0.427 0.258 0.623 0.4/2 0.623 0.413 
3 0.5/1 0.575 0.511 0.578 0.667 0.637 0.668 0.641 
5 0.439 0.543 0.440 0.549 0.604 0.599 0.606 0.610 

0.8 1 0.315 0.358 0.316 0.360 0.460 0.570 0.46/ 0.571 
3 0.464 0.624 0.472 0.634 0.593 0.758 0.601 0.765 
5 0.479 0.604 0.487 0.633 0.610 0.760 0.623 0.787 

Accuracy of prediction was computed as the correlation between predicted and simulated values; average inbreeding coefficients in 
generations 1, 3 and 5 were 0.00, 0.14, and 0.35, respectively 
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effects, but still quite small. The difference was largest for 
p = 0.2 and H 2 = 0.5 in generation five. For p = 0.2, dom- 
inance variance is small relative to the additive variance, 
crg I is much larger than agR, and the covariance between 
additive and dominance effects is most important. For 
p=0.5,  accuracies of predicted dominance effects were 
almost identical. For p=0.8,  differences between both 
methods were larger for H 2 =  0.2 than for H 2 = 0.5. 

Discussion 

Inbreeding changes the mean and genetic covariance 
structure of a population. With inbreeding, genetic co- 
variance remains a sum of products of relationship coef- 
ficients and (co)variance components. In addition to ad- 
ditive and dominance variance in an infinite, random 
mating base population, the extra parameters required 
are dominance variance and covariance between additive 
and dominance effects in the completely inbred popula- 
tion with allelic frequencies equal to those in the base 
population, and sum over loci of effects of inbreeding 
depression and squared effects of inbreeding depression 
(e.g. Harris 1964; Gillois ]964; Jacquard 1974; Cocker- 
ham and Weir 1984). 

A mixed linear model for a phenotype of a quantita- 
tive trait with additive and dominance variation includes 
additive effect, expected value of dominance effect or ef- 
fect of complete inbreeding depression times inbreeding 
coefficient, and dominance effect beyond inbreeding de- 
pression. Although there is an argument over the exis- 
tence of a genetic model with an infinite number of loci 
in gametic phase equilibrium and directional dominance 
(Robertson and Hill ]983; Smith and M/iki-Tanila 1990), 
the two real and unresolved issues are whether the linear 
model can adequately describe data on a trait affected by 
a finite number of loci, in particular with selection, and 
whether all required genetic parameters can be estimated 
from real data. The present and previous simulations 
(Uimari and Kennedy 1990; De Boer and Van Arendonk 
1992) showed that predictions of additive and dominance 
effects were empirically unbiased in unselected or selected 
populations with inbreeding, for a trait with a finite num- 
ber of biallelic loci. Estimation of all of the required 
genetic parameters has been addressed by Chevalet.and 
Gillois (1977). 

Implementation of the mixed model with additive and 
dominance effects and the exact genetic covariance ma- 
trix in Eq. 28 for large populations is currently not feasi- 
ble. Computation of G requires the calculation of five 
matrices with different probabilities of gene identities. 
The maximum order of these matrices is determined by 
the number of gametes and gamete pairs. The number of 
required gamete pairs will increase with the number of 

generations in the data and decrease due to inbreeding. 
For the simulated population with 200 individuals after 
generation five the number of gamete pairs was 1326. The 
size of these matrices for large populations and potential 
improvements in efficiency have not yet been investigat- 
ed. More importantly, G -  1 is required in MME and was 
computed by first creating G and subsequently reverting 
it, which is not feasible for large populations. 

Smith and M/iki-Tanila (1990) presented a method for 
direct computation of E-1, the inverse of an extended 
genetic covariance matrix, which could be used in MME 
predicting additive effects of gametes and dominance ef- 
fects of gamete pairs. This approach, however, could not 
be used for the simulated data because E is singular for 
biallelic loci, i.e. E -  1 does not exist although G-1  exists. 
The singularity is caused by a linear relationship among 
additive effects of base gametes i and dominance effects of 
gamete pairs ii due to the identity a2r or2 i = V2 aZdi for two 
alleles. 

Simulations of populations with inbreeding and addi- 
tive and dominance variation have used individual loci 
models. Under the infinitesimal model, total genetic ef- 
fects are normally distributed. A method for generating 
total additive and dominance effects taking full account 
of the covariance structure in Eq. 28 is not available. In 
the absence of inbreeding, recurrence equations exist 
which allow generating an offspring's additive effect as 
the average effect of sire and dam plus Mendelian sam- 
pling (e.g. Quaas ]988). An offspring's dominance effect is 
generated as a sire-dam combination effect plus Mende- 
lian sampling, and a sire-dam combination effect is gener- 
ated from the combination effects of sire with parents of 
the dam and of dam with parents of the sire (Hoeschele 
and Van Raden, 1991). These recurrences also permit 
computing A-  1 (Henderson 1976; Quaas 1988) and D -  1 
(Hoeschele and Van Raden 1991) directly. However, they 
do not generate all of the genetic relationships among 
inbred animals and their close relatives, e.g. covariances 
among additive and dominance effects are ignored. 

Approximate BLUP accounts only for the effect of 
inbreeding on mean and additive covariance, but is com- 
putationally feasible for large populations. Approximate 
predictions of additive and dominance effects had only 
slightly reduced accuracies relative to exact BLUP for 
traits affected by a finite number of loci and inbreeding. 
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